Tulorial

WALKTHROUGH

REMOT!

~LY CONTROL

GPIO WITH GPIO ZERO

GPIO Zero is a very powerful tool, and now you can use it
when you’re not even on the Raspberry Pi!

he GPIO Zero Python library not only makes

programming simple e lecrronicseasier; it

comeswith some advanced features. These offer
seamless interfacing berween different devices, whilke
helping you progress along the Python leaming curve.
One useful thing about GPIO Zero is that you can choose
which low-level pin library to use, allowing you to take
advantage of the powerof another library asrequired,
without having to rewrite your cade. By default, Ben
Croston's RPLGPIO library is used, and that's fine
for most purposes. One of the supported alternative
libcaries isJoan 2937's pigpio library, which supports
remote GPIO. This allows you to remotely control the
GPIO pinsof a Pl aver a netwaock. You can control the
pins from a PCor Mac, o from another Pi, and even use
the GPIOsof multiple Pis within the same script.

Thismonth, GPIO Zero vi.4was releasad, stablising

the remote pins gyntax. This guide is written for vi 4 and
will not work en earlier versdons. Make sure youupgrade

60 | Might fogues 2017

before you start: open a Terminal and enter sudo apt
update &% sudo apt install python3-gpiozero.
Asimple GPIO Zero Python script looks like this:

from gpiozero import Button, LED
from signal import pause

btn
led

Button(2)
LED(17)

led.source = btn.values

pause()

Running this scripton a Pi will work as expected: a
button connected to pin 2 (BCM numbering) will light
an LEDconnected to pin 17 when pressad. However,
when configured correctly, nunning this same script
can control the pins of aPi overthe netwaork.

/

ragpb amypl ong/macpl

REMOTELY CONTROL GPIO WITH GPIO ZERO

Tutorial

Pin factories
The vay GP10 Zerowrapsaround low-level pin libraries
is by providing a pin factory. By default, an RPLGPIO-
based factory is wsed, and when you askfora pin, the
factory gives you a connaction to it using the chosen
pinlibrary. A pigpio pin factory can be usad on itsown
(simply use the pigpio library instead of RPLGPIO)
but if an IP address is provided too, this can be wedto
remotely contrel a Pi's pins.

To run the above script (unchanged) on a remaote
Pi, the Pineads to be configurad to accept remote
connections. This can bedone using the Raspberry Pi
configuration teol (viaGUlor sudo raspi-config), by
enabling Remote GPIO under Interfaces. Otherwise, the

Pi needs to have the pigpio daemon running, by entering

sudo pigpiodinaTerminal Finally, ook up the PI's [P
address with hostname -I. Now return to the Pi you're
running the script from, and instead of running the
code normally (like python3 led button.py), settwo
emvironment varablesin the same command, using the
remote Pi's P address:

GPIOZERO_PIN_FACTORY=pigpio
PIGPIO_AIDR=192.168.1.5
python3 led_button.py

Now, when the script runs, the GPIO commandsare
exacutedon the remate Piover the netwaock.

Analternative torunninga saript from the command
line is to set the environment variables before launching
yvour Pythonaditor. Forexample:

GPIOZERO_PIN_FACTORY=pigpio
PIGPIO_ADDR=192.168.1.5
idle3 &

You canalso export these variables inyour .bashre
file. See magpi.cc/2qd2MEDb for more infermation.

Hot-swapping pin factories

The previous example showed how toset the default
pin factory. Unless otherwise specified, any GPIO
devices creatad will be connected 1o pins created by
this default pin factory. Mlternatively, you canspecify
a pinfactory(and with pigpio, an 1P address) within
the Pythoncode. There are two options fordoing this.

ras phamypl org/mag pl

You cancreate a pin factery instance, and pass that
In as you create a new object, likesox

from gpiozero import LED, Button

from gpiozero.pins.pigpio import PiGPIOFactory

from signal import pause
factory = PiGPIOFactory('192.168.1.5')

btn
led

Button(2) # local RPi.GPIO pin

led.source = button.values

pause()

Alternative ly, you canchange the default pin factory
in the middle of your script, like so:

import gpiozero
from gpiozero import LED, Button

from gpiozero.pins.pigpio import PiGPIOFactory

from signal import pause

btn = Button(2) # local RPi.GPIO pin

LEDX17, pin_factory=factory) # remote pin

gpiozero.Device.pin_factory = PiGPIOFactory('192.168.1.5')

led = LEDX17) # remote pin
led.source = button.values

pause()

Press the butten on your Pl and watch the LED light
upon the remote Pi. With no envirenment variables
set, RPLGPIO s usad as the default pin factory. When
the button s created, it uses RPLGPIO toaddressa kocal
pin. The default pin factory is replaced with pigpio,
connacting to a particular IP address, and the LED IS
created on pin 17, which now refersto the remote Pi.

While this can be a confusing conce pt, it's quite
simple once you getusad tothe idea, and it could be very
useful in many projects. You caneven run this code on
aPC(not a Raspberry Pi) and use it tocontrel aPion
the network. Any platform (Windows, Macor Linux)
will work, as long as you have Python, pip, GPIO Zero,
and pigpio installed. For full instructions, head over
1o pliofremotegpio.

Security

It's worth pointing out that allowing re mate GPIO
connactions over the networkcan be risky. You probably
shouldn'tdo this inareal project on a network with
other users. However, you can take precautions to make
it more secure. Aneasy methad s to only allow remaote

connactions from a particular IP addresswhen launching

the pigpio daemon: sudo pigpiod -n 192.168.1.4.
Chack out some remote GPIO recipes and more on the
GPIOZero documentation at magpi.ccf/2qd2MED.

LEARN

MORE ABOUT

GPO ZERD

GPIO Zerois an
am&lg_tod

fugua 2oy WA

61



