

Python Idioms

Safe Hammad
Python Northwest
16th January 2014

What is an idiom?

“The specific grammatical, syntactic, and
structural character of a given language.”

“A commonly used and understood way of
expressing an fact, idea or intention.”

Why care about Python idioms?

"Programs must be written for people to read, and
only incidentally for machines to execute."
- Abelson & Sussman, SICP

“There should be one - and preferably only one -
obvious way to do it.”
- Tim Peters, The Zen of Python (PEP 20)

● The use of commonly understood syntax or coding
constructs can aid readability and clarity.
● Some idioms can be faster or use less memory than
their “non-idiomatic” counterparts.
● Python's idioms can make your code Pythonic!

Ten idioms

(In no particular order)

1. Make a script both
importable and executable

 if __name__ == '__main__':

Example
def main():
 print('Doing stuff in module', __name__)

if __name__ == '__main__':
 print('Executed from the command line')
 main()

$ python mymodule.py
Executed from the command line
Doing stuff in module __main__

>>> import mymodule
>>> mymodule.main()
Doing stuff in module mymodule

2. Test for “truthy” and “falsy”
values

 if x:

 if not x:

Example
 # GOOD
 name = 'Safe'
 pets = ['Dog', 'Cat', 'Hamster']
 owners = {'Safe': 'Cat', 'George': 'Dog'}
 if name and pets and owners:
 print('We have pets!')

 # NOT SO GOOD
 if name != '' and len(pets) > 0 and owners != {}:
 print('We have pets!')

● Checking for truth doesn't tie the conditional expression to the type
of object being checked.
● Checking for truth clearly shows the code's intention rather than
drawing attention to a specific outcome.

What is truth?

True False

Non-empty string Empty string

Number not 0 Number 0

Non-empty container: len(x) > 0 Empty container: len(x) == 0

- None

True False

__nonzero__ (2.x) / __bool__ (3.x) __nonzero__ (2.x) / __bool__ (3.x)

3. Use in where possible

Contains:

 if x in items:

Iteration:

 for x in items:

Example (contains)

 # GOOD
 name = 'Safe Hammad'
 if 'H' in name:
 print('This name has an H in it!')

 # NOT SO GOOD
 name = 'Safe Hammad'
 if name.find('H') != -1:
 print('This name has an H in it!')

● Using in to check if an item is in a sequence is clear and concise.
● Can be used on lists, dicts (keys), sets, strings, and your own classes by
implementing the __contains__ special method.

Example (iteration)

 # GOOD
 pets = ['Dog', 'Cat', 'Hamster']
 for pet in pets:
 print('A', pet, 'can be very cute!')

 # NOT SO GOOD
 pets = ['Dog', 'Cat', 'Hamster']
 i = 0
 while i < len(pets):
 print('A', pets[i], 'can be very cute!')
 i += 1

● Using in to for iteration over a sequence is clear and concise.
● Can be used on lists, dicts (keys), sets, strings, and your own classes by
implementing the __iter__ special method.

4. Swap values without temp
variable

 a, b = b, a

Example
 # GOOD
 a, b = 5, 6
 print(a, b) # 5, 6

 a, b = b, a
 print(a, b) # 6, 5

 # NOT SO GOOD
 a, b = 5, 6
 print(a, b) # 5, 6

 temp = a
 a = b
 b = temp
 print(a, b) # 6, 5

● Avoids polluting namespace with temp variable used only once.

5. Build strings using sequence

 ''.join(some_strings)

Example
 # GOOD
 chars = ['S', 'a', 'f', 'e']
 name = ''.join(chars)
 print(name) # Safe

 # NOT SO GOOD
 chars = ['S', 'a', 'f', 'e']
 name = ''
 for char in chars:
 name += char
 print(name) # Safe

● The join method called on a string and passed a list of strings takes
linear time based on length of list.
● Repeatedly appending to a string using '+' takes quadratic time!

6. EAFP is preferable to LBYL

“It's Easier to Ask for Forgiveness than
Permission.”

“Look Before You Leap”

 try: v. if ...:
 except:

Example
 # GOOD
 d = {'x': '5'}
 try:
 value = int(d['x'])
 except (KeyError, TypeError, ValueError):
 value = None

 # NOT SO GOOD
 d = {'x': '5'}
 if 'x' in d and \
 isinstance(d['x'], str) and \
 d['x'].isdigit():
 value = int(d['x'])
 else:
 value = None

● Throwing exceptions is not “expensive” in Python unlike e.g. Java.
● Rely on duck typing rather than checking for a specific type.

7. Enumerate

for i, item in enumerate(items):

Example
 # GOOD
 names = ['Safe', 'George', 'Mildred']
 for i, name in enumerate(names):
 print(i, name) # 0 Safe, 1 George etc.

 # NOT SO GOOD
 names = ['Safe', 'George', 'Mildred']
 count = 0
 for name in names:
 print(i, name) # 0 Safe, 1 George etc.
 count += 1

● Available since Python 2.3!
● Use the start parameter available since Python 2.6 to start at a
number other than 0.

8. Build lists using list
comprehensions

[i * 3 for i in data if i > 10]

Example
 # GOOD
 data = [7, 20, 3, 15, 11]
 result = [i * 3 for i in data if i > 10]
 print(result) # [60, 45, 33]

 # NOT SO GOOD (MOST OF THE TIME)
 data = [7, 20, 3, 15, 11]
 result = []
 for i in data:
 if i > 10:
 result.append(i * 3)
 print(result) # [60, 45, 33]

● Very concise syntax.
● Be careful it doesn't get out of hand (in which case the second form
can be clearer).

9. Create dict from keys and values
using zip

d = dict(zip(keys, values))

Example
 # GOOD
 keys = ['Safe', 'Bob', 'Thomas']
 values = ['Hammad', 'Builder', 'Engine']
 d = dict(zip(keys, values))
 print(d) # {'Bob': 'Builder',
 'Safe': 'Hammad',
 'Thomas': 'Engine'}

 # NOT SO GOOD
 keys = ['Safe', 'Bob', 'Thomas']
 values = ['Hammad', 'Builder', 'Engine']
 d = {}
 for i, key in enumerate(keys):
 d[keys] = values[i]
 print(d) # {'Bob': 'Builder',
 'Safe': 'Hammad',
 'Thomas': 'Engine'}
● There are several ways of constructing dicts!

10. And the rest … !

● while True:

 break # This will spark discussion!!!

● Generators and generator expressions.

● Avoid from module import *

Prefer: import numpy as np; import pandas as pd
● Use _ for “throwaway” variables e.g.:

for k, _ in [('a', 1), ('b', 2), ('c', 3)]

● dict.get() and dict.setdefault()

● collections.defaultdict

● Sort lists using l.sort(key=key_func)

''.join(['T', 'h', 'a', 'n', 'k', 's', '!'])

Safe Hammad
http://safehammad.com

@safehammad

http://safehammad.com/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

